
Chemistry 100 Final Exam

Fall 1995

(c) 0.46g (d) 0.55g (e) 0.82g

	11. 1 ml of a 5 M solution is diluted to give 500 ml. What is the new molarity?	SCUTIONS
	(a) 0.1 (b) 0.01 (c) 0.001 (d) 0.02	•
	14. How many moles of NaCl are present in 100. ml of a 0.125 M sol	ution?
,	(a) 1.25 x 10 ⁻³ (b) 0.0800 (c) 0.0125 (d) 12.5 (e) 800	SOLUTIONS
	15. A solution can be described as	SOLUTIONS
	 (a) a heterogenous mixture (b) a homogeneous mixture (c) a solute dissolved in solvent with fixed proportions (d) difficult to separate its components physically (e) having the same properties as its solvent 	
•	Pick the letter from the list below which best completes the following state in 16-19.	
	 (a) saturated (b) miscible (c) concentrated (d) solubility (e) concentration 	SOLUTIONS
	16. Alcohol is infinitely with water.	
	17. A dilute solution has fewer solute particles dissolved in it than a one.	ı
	18. Molality, molarity and mass % are terms of	
	19. The maximum amount of solute that can be dissolved in a certa amount of solvent is its	in

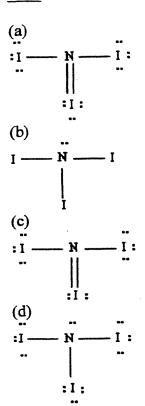
20. An aqueous nitric acid solution that is 70.0% HNO ₃ by ma	ss contains:
(a) 70.0g HNO ₃ and 100.g H ₂ O (b) 70.0 mol HNO ₃ 1.00 L H ₂ O (c) 70.0g HNO ₃ and 30.0g H ₂ O (d) 70.0g H ₂ O ₃ and 30.0g HNO ₃ (e) 1.11 mol HNO ₃ in 1.00 L H ₂ O	SCUTTON
21. What is the weight percent of water in a solution made by 15.6g of NaCl in 135g water?	dissolving
(a) 0.104% (b) 10.4% (c) 11.6% (d) 88.4% (e) 89.6%	
22. The molecular geometry of the CO ₂ molecule is: (a) linear (b) bent (c) pyramidal (d) trigonal planar (e) tetrahedral	VSEPR
23. The molecular geometry of the H ₂ O molecule is: (a) linear (b) bent (c) pyramidal (d) trigonal planar (e) tetrahedral	VSEPR
24. The <u>electron pair arrangement</u> around the N atom in the a molecule NH ₃ is: (a) linear (b) bent	ammonia VSEPR
(c) pyramidal (d) trigonal planar (e) tetrahedral	

25. The electron pair arrangement and the molecular geometry of SO ₃ are:	
 (a) linear (b) bent (c) pyramidal (d) trigonal planar (e) tetrahedral 	VSEPR
PART II	2011 201 10 10 10 10 10 10 10 10 10 10 10 10 1
26. Which is not a chemical change?	VOCABULARY
 (a) A firefly lights up (b) Tobacco is smoked in a pipe (c) Moth balls sublime at room temperature (d) A leaf turns color in autumn (e) Butter left out at room temperature turns rancid 	
27. By what process is a gas converted to a liquid?	VOCABULARY
 (a) condensation (b) evaporation (c) sublimation (d) melting 28. Which of the following is not a diatomic gas? 	*
	FORMULA
 (a) nitrogen (b) hydrogen (c) helium (d) oxygen (e) fluorine 	
29. 425°C is how many degrees Fahrenheit?	and the same of th
(a) 218 (b) 425 (c) 765 (d) 797	ENERGY
(e) 823	

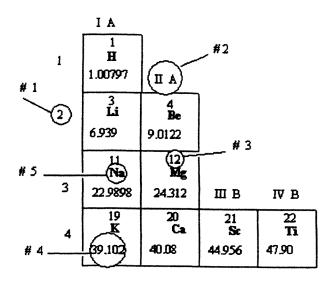
30. 0.05070 has significant figures (a) 3 (b) 4 (c) 5 (d) 6 (e) 7	HEASUREHENT
31. The way to write the number of lead atoms in one million scientific notation is: (a) 1 x 10 ⁶ Pb atoms (b) 1 x 10 ²⁹ Pb atoms (c) 6.022 x 10 ⁶ Pb atoms (d) 6.022 x 10 ²³ Pb atoms (e) 6.022 x 10 ²⁹ Pb atoms	moles in
32. How many significant figures in the answer to: 6799.5 + 25 = (a) 1 (b) 2 (c) 3 (d) 4 (e) 5	HEASUREMENT
33. Calculate the mass of a plastic brick measuring 2.00cm by 1.50cm and having a density of 1.26g/cm ³ . (a) 11.3 g (b) 9.00 g (c) 7.14 g (d) 0.140 g (e) 0.0882 g	y 3.00cm by MEASUREMENT
a) Cr (b) Sn (c) Se (d) Te (e) S	PERWOIC TABLE

E

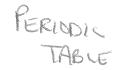
35. Pick the <u>wrong</u> statement.	ATALL
(a) A large majority of the mass of the atom is in the nucleus.(b) Electrons are in constant motion.	STRUCTURE
(c) Atoms that have lost electrons will be positively charged.(d) The masses of the elements give in the periodic table are the actual m the elements.	asses of
(e) An atom is neutral when the number of protons is equal to the number electrons.	er of
36. The chemical properties of an element are determined by its:	Periodic
(a) atomic mass (b) atomic number	PERIODIC TABLE
(c) number of neutrons (d) symbol (e) density	
37. A 5d orbital can contain a maximum of electrons.	ELECTROPI
(a) 2 (b) 6 (c) 8 (d) 10 (e) 14	CONFIGURATION
38. Nonmetals tend to electrons when forming ionic co	mpounds.
(a) gain (b) lose (c) share (d) transfer	FORHULA
39. The I ion is than the I atom.	PERINDIC
 (a) smaller than (b) larger than (c) the same size as (d) not enough information given 	Trespos
40. N ₂ has a bond between the two nitrogen atoms.	
(a) single(b) double(c) triple(d) ionic	BONDING


42. 40. grams of Br ₂ contains how many atoms?	
	MOLE
(a) 0.25	
(b) 0.50	
(c) 1.5×10^{23}	
(d) 3.0×10^{23}	
(e) 6.0×10^{23}	
43. An atom is composed mostly of:	/s
	ATOMIC
(a) protons	STRUCTURE
(b) electrons	and the
(c) empty space	
(d) neutrons	
(e) nuclei	
44. An ion with atomic number 50 and 46 electrons is:	
(a) Pd ⁴⁺	Atomic
(b) Sn ⁴⁺	
(c) Pd ⁴ -	STRUCTURE
(d) Sn ⁴	
(e) unlikely to exist	
45. The number of valence electrons in CF ₄ is:	
() 5 (1) 0 () 22 () 22 () 40	VSEPR
(a) 5 (b) 9 (c) 23 (d) 32 (e) 40	V) (1 1 -
46. The number of bonds is CF ₄ is:	
(-) 1 (1) 2 (-) 2 (4) 4 (-) 5	VSEPR
(a) 1 (b) 2 (c) 3 (d) 4 (e) 5	
47. The oxidation number of C in CF ₄ is:	
(a) 0 (b) -1 (c) +1 (d) -4 (e) +4	FORTUNA
48. Each C-F bond in CF ₄ can be described as:	
() 1 () () () () () () () () () () () () ()	VSEPR
(a) polar (b) non-polar (c) ionic (d) coordinate	

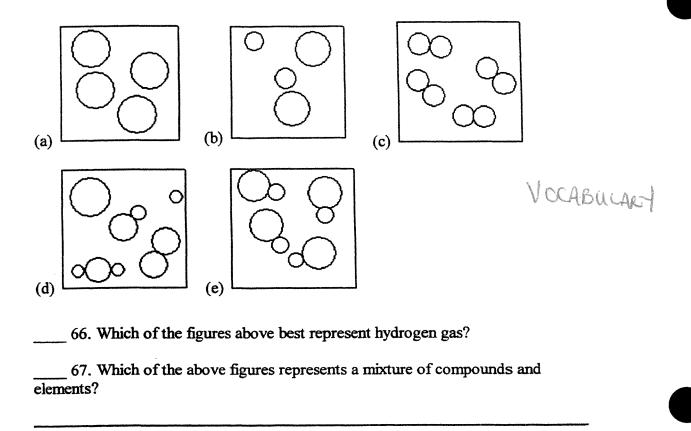
49. The compound CaF ₂ is called:	
 (a) Difluorocalcium (b) Calcium fluoride (c) Calcium fluorine (d) Calcium difluoride (e) monocalcium difluoride 	FORHULA
51. The electron configuration of the O ²⁻ ion is:	ELEGRAJ
(a) 1s ² 2s ² 2p ² (b) 1s ² 2s ² 2p ⁴ (c) 1s ² 2s ² 2p ⁶ (d) 2p ⁴ (e) 2p ⁶	ELECTRON
52. Molality is defined as:	
 (a) grams of solute per kilogram of solvent. (b) moles of solute per kilograms of solution. (c) moles of solute per kilograms of solvent. (d) moles of solute per liter of solution. (e) grams of solute per 100 grams of solution. 	
54. The empirical formula for a compound with the c	composition 37.2%C,
7.82%H, and 55.0%Cl is:	HOLE
(a) HCCl (b) H ₂ C ₃ Cl (c) HC ₅ Cl ₇ (d) H ₃ CCl ₃ (e) H ₅ C ₂ Cl	
55. How many moles of nitrate ions are in 1.1 x 10 ⁻³	mol of Ca(NO ₃) ₂ ?
(a) 1 (b) 2 (c) 1.1 x 10 ⁻³ (d) 2.2 x 10 ⁻³ (e) 3.3 x 10 ⁻³	HOLE


56. Balance the following equation and report the number of mo that can be formed starting with 5.0 moles of NaClO.	les of O ₂
$\underline{\hspace{1cm}} \text{NaClO}_{(aq)} \longrightarrow \underline{\hspace{1cm}} \text{NaCl}_{(aq)} + \underline{\hspace{1cm}} \text{O}_{2(g)}$	STOICHIMER
(a) 1.0 (b) 2.0 (c) 2.5 (d) 4.0 (e) 5.0	
57. The reaction in problem 54 is a/n: (a) combination reaction (b) decomposition reaction (c) single replacement reaction (d) double replacement reaction (e) acid-base reaction	REACTIONS
58. Oxidation-reduction reactions are those that always involve	· :
 (a) formation of a precipitate (b) decomposition of reactants (c) transfer of cations and anions (d) transfer of electrons (e) production of gas 	REACTIONS
59. Given the equation:	
$MnO_2 + 4HCl \longrightarrow MnCl_2 + Cl_2 + 2H_2O$	
How many grams of HCl are needed to make 3.00 grams of MnCl ₂ ?	
(a) 12.0 g (b) 3.48 g (c) 0.750 g (d) 0.0952 g	STOLCHIOMETRY

62. The Lewis structure for the NI₃ molecule is:


VSEPR

In this segment of the periodic table, several items are labeled. Use this to answer questions 63-65.



____ 63. The labeled item which identifies the number of protons in the nucleus of an atom is:

____ 64. The labeled item that identifies the group number is:

____ 65. The labeled item that identifies the relative mass of an element is:

